Cauchy problem for nonlinear parabolic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Decomposition Method for Solving the Cauchy Problem for Nonlinear Parabolic-Hyperbolic Equations

In this paper Modified decomposition method is applied to the solvability of nonlinear parabolic-hyperbolic equations and illustrated with a few simple examples.

متن کامل

The Cauchy Problem for Semilinear Parabolic Equations in Besov Spaces

In this paper we first give a unified method by introducing the concept of admissible triplets to study local and global Cauchy problems for semi-linear parabolic equations with a general nonlinear term in different Sobolev spaces. In particular, we establish the local well-posedness and small global well-posedness of the Cauchy problem for semi-linear parabolic equations without the homogeneou...

متن کامل

Stability of Entropy Solutions to the Cauchy Problem for a Class of Nonlinear Hyperbolic-Parabolic Equations

Consider the Cauchy problem for the nonlinear hyperbolic-parabolic equation: (*) ut + 1 2 a · ∇xu = ∆u+ for t > 0, where a is a constant vector and u+ = max{u, 0}. The equation is hyperbolic in the region [u < 0] and parabolic in the region [u > 0]. It is shown that entropy solutions to (*), that grow at most linearly as |x| → ∞, are stable in a weighted L(IR ) space, which implies that the sol...

متن کامل

Nonexistence Results for the Cauchy Problem for Nonlinear Ultraparabolic Equations

and Applied Analysis 3 2. Results Solutions to 1.1 subject to conditions 1.2 are meant in the following weak sense. Definition 2.1. A function u ∈ Lmloc Q ∩ L p loc Q is called a weak solution to 1.1 if ∫ Q |u|φ dP ∫ S u 0, t2;x φ 0, t2;x dP2 ∫ S u t1, 0;x φ t1, 0;x dP1 − ∫

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hokkaido Mathematical Journal

سال: 1998

ISSN: 0385-4035

DOI: 10.14492/hokmj/1351001251